999 research outputs found

    Off-shell effects on particle production

    Get PDF
    We investigate the observable effects of off-shell propagation of nucleons in heavy-ion collisions at SIS energies. Within a semi-classical BUU transport model we find a strong enhancement of subthreshold particle production when off-shell nucleons are propagated.Comment: 11 pages, 3 figure

    Immediate effects of a very brief planning intervention on fruit and vegetable consumption: A randomized controlled trial

    Get PDF
    Action planning interventions can effectively promote fruit and vegetable (FV) consumption, but not much is known about the day-to-day translation of intervention planning into action. In this randomized controlled trial, immediate intervention effects of a very brief planning intervention on FV consumption during the following 13 days were investigated. After a 13-day pre-intervention diary, N = 206 participants (aged 19-66 years) were randomly allocated to a waiting-list control condition or a planning condition, where they formed one FV plan. Participants from both conditions completed a 13-day post-intervention diary. Self-reported daily FV consumption, FV-specific self-efficacy, and action control were assessed. Segmented linear mixed models estimating a discrete change (i.e. "jump") between diary phases showed a positive "jump" of FV intake and self-efficacy in the planning condition when compared to the control condition. For action control, such effects were not observed. Changes in study variables throughout the post-intervention phase did not differ between both conditions. Present findings extend previous evidence on action planning interventions by showing that increases in self-regulatory (i.e. self-efficacy) and behavioral (i.e. FV intake) outcomes can occur very rapidly and already on the first day for which behavioral increases were planned

    Gut microbiota differs between children with inflammatory bowel disease and healthy siblings in taxonomic and functional composition: a metagenomic analysis

    Get PDF
    Current treatment for pediatric inflammatory bowel disease (IBD) patients is often ineffective, with serious side effects. Manipulating the gut microbiota via fecal microbiota transplantation (FMT) is an emerging treatment approach but remains controversial. We aimed to assess the composition of the fecal microbiome through a comparison of pediatric IBD patients to their healthy siblings, evaluating risks and prospects for FMT in this setting. A case-control (sibling) study was conducted analyzing fecal samples of six children with Crohn's disease (CD), six children with ulcerative colitis (UC) and 12 healthy siblings by metagenomic sequencing. In addition, lifetime antibiotic intake was retrospectively determined. Species richness and diversity were significantly reduced in UC patients compared with control [Mann-Whitney U-test false discovery rate (MWU FDR) = 0.011]. In UC, bacteria positively influencing gut homeostasis, e.g., Eubacterium rectale and Faecalibacterium prausnitzii, were significantly reduced in abundance (MWU FDR = 0.05). Known pathobionts like Escherichia coli were enriched in UC patients (MWU FDR = 0.084). Moreover, E. coli abundance correlated positively with that of several virulence genes (SCC > 0.65, FDR < 0.1). A shift toward antibiotic-resistant taxa in both IBD groups distinguished them from controls [MWU Benjamini-Hochberg-Yekutieli procedure (BY) FDR = 0.062 in UC, MWU BY FDR = 0.019 in CD). The collected results confirm a microbial dysbiosis in pediatric UC, and to a lesser extent in CD patients, replicating associations found previously using different methods. Taken together, these observations suggest microbiotal remodeling therapy from family donors, at least for children with UC, as a viable option.NEW & NOTEWORTHY In this sibling study, prior reports of microbial dysbiosis in IBD patients from 16S rRNA sequencing was verified using deep shotgun sequencing and augmented with insights into the abundance of bacterial virulence genes and bacterial antibiotic resistance determinants, seen against the background of data on the specific antibiotic intake of each of the study participants. The observed dysbiosis, which distinguishes patients from siblings, highlights such siblings as potential donors for microbiotal remodeling therapy in IBD

    Chemostratigraphy of Neoproterozoic carbonates: implications for 'blind dating'

    Get PDF
    The delta C-13(carb) and Sr-87/Sr-86 secular variations in Neoproteozoic seawater have been used for the purpose of 'isotope stratigraphy' but there are a number of problems that can preclude its routine use. In particular, it cannot be used with confidence for 'blind dating'. The compilation of isotopic data on carbonate rocks reveals a high level of inconsistency between various carbon isotope age curves constructed for Neoproteozoic seawater, caused by a relatively high frequency of both global and local delta C-13(carb) fluctuations combined with few reliable age determinations. Further complication is caused by the unresolved problem as to whether two or four glaciations, and associated negative delta C-13(carb) excursions, can be reliably documented. Carbon isotope stratigraphy cannot be used alone for geological correlation and 'blind dating'. Strontium isotope stratigraphy is a more reliable and precise tool for stratigraphic correlations and indirect age determinations. Combining strontium and carbon isotope stratigraphy, several discrete ages within the 590-544 Myr interval, and two age-groups at 660-610 and 740-690 Myr can be resolved

    In Situ Monitoring of the Catalytic Activity of Cytochrome c Oxidase in a Biomimetic Architecture

    Get PDF
    AbstractCytochrome c oxidase (CcO) from Paracoccus denitrificans was immobilized in a strict orientation via a his-tag attached to subunit I on a gold film and reconstituted in situ into a protein-tethered bilayer lipid membrane. In this orientation, the cytochrome c (cyt c) binding site is directed away from the electrode pointing to the outer side of the protein-tethered bilayer lipid membrane architecture. The CcO can thus be activated by cyt c under aerobic conditions. Catalytic activity was monitored by impedance spectroscopy, as well as cyclic voltammetry. Cathodic and anodic currents of the CcO with cyt c added to the bulk solution were shown to increase under aerobic compared to anaerobic conditions. Catalytic activity was considered in terms of repeated electrochemical oxidation/reduction of the CcO/cyt c complex in the presence of oxygen. The communication of cyt c bound to the CcO with the electrode is discussed in terms of a hopping mechanism through the redox sites of the enzyme. Simulations supporting this hypothesis are included

    Instruments of RT-2 Experiment onboard CORONAS-PHOTON and their test and evaluation II: RT-2/CZT payload

    Full text link
    Cadmium Zinc Telluride (CZT) detectors are high sensitivity and high resolution devices for hard X-ray imaging and spectroscopic studies. The new series of CZT detector modules (OMS40G256) manufactured by Orbotech Medical Solutions (OMS), Israel, are used in the RT-2/CZT payload onboard the CORONAS-PHOTON satellite. The CZT detectors, sensitive in the energy range of 20 keV to 150 keV, are used to image solar flares in hard X-rays. Since these modules are essentially manufactured for commercial applications, we have carried out a series of comprehensive tests on these modules so that they can be confidently used in space-borne systems. These tests lead us to select the best three pieces of the 'Gold' modules for the RT-2/CZT payload. This paper presents the characterization of CZT modules and the criteria followed for selecting the ones for the RT-2/CZT payload. The RT-2/CZT payload carries, along with three CZT modules, a high spatial resolution CMOS detector for high resolution imaging of transient X-ray events. Therefore, we discuss the characterization of the CMOS detector as well.Comment: 26 pages, 19 figures, Accepted for publication in Experimental Astronomy (in press

    CSNL: A cost-sensitive non-linear decision tree algorithm

    Get PDF
    This article presents a new decision tree learning algorithm called CSNL that induces Cost-Sensitive Non-Linear decision trees. The algorithm is based on the hypothesis that nonlinear decision nodes provide a better basis than axis-parallel decision nodes and utilizes discriminant analysis to construct nonlinear decision trees that take account of costs of misclassification. The performance of the algorithm is evaluated by applying it to seventeen datasets and the results are compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date. The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the datasets and is considerably faster. The use of bagging with CSNL further enhances its performance showing the significant benefits of using nonlinear decision nodes. The performance of the algorithm is evaluated by applying it to seventeen data sets and the results are compared with those obtained by two well known cost-sensitive algorithms, ICET and MetaCost, which generate multiple trees to obtain some of the best results to date. The results show that CSNL performs at least as well, if not better than these algorithms, in more than twelve of the data sets and is considerably faster. The use of bagging with CSNL further enhances its performance showing the significant benefits of using non-linear decision nodes

    Flexographic printing of ultra-thin semiconductor polymer layers

    Get PDF
    Methods of fabricating and controlling organic light emitting diode (OLED) or photovoltaic layers effectively are paramount for achieving a functional and durable device. The deposited film needs to be uniform and homogeneous to avoid non-uniform luminescence in the OLED. Although methods of depositing the ultra-thin sub 100 nm layers within OLED are effective, they are relatively slow and expensive. This paper therefore demonstrates flexography as an alternative method for depositing the semiconductor layer for OLED onto glass substrate. In this case a proprietary semiconducting polyflourine dispersed in xylene was used. This material functions as the hole injecting layer. The low polymer concentration and requirement for aromatic solvent presented challenges for the process; conventional photopolymer printing plates degraded rapidly on contact with xylene and rubber printing plates were found to be sufficiently resilient. Through optimisation of printing parameters and surface modification of both the printing plate and substrate with UV/ozone exposure, a consistent sub-100 nm film was achieved. Flexographic printing will enable a substantial reduction in layer fabrication time, as well as allowing roll to roll mass production at lower cost. The research indicated within this paper will aid the progression of flexography as a viable cost effective method for OLED or display technology application through continuous printing of ultra-thin layers
    corecore